又是个蓝莫反水题

首先发现对于位置(x,y)(x,y),中间遮挡的点就是gcd(x,y)1\gcd(x, y) - 1个,那么题目就是求:

i=1nj=1m2×(gcd(i,j)1)+1\sum_{i = 1}^n \sum_{j = 1}^m 2 \times (\gcd(i, j) - 1) + 1

我们令f(x)=2×(x1)+1=2x1f(x) = 2 \times (x - 1) + 1 = 2x - 1,那么就是求:

i=1nj=1mf(gcd(i,j))\sum_{i = 1}^n \sum_{j = 1}^m f(\gcd(i,j))

然后就是套路了,假设nmn \leq m

=i=1nj=1mdgcd(i,j)g(d)= \sum_{i = 1}^n \sum_{j = 1}^m \sum_{d | \gcd(i, j)}g(d)

=i=1nj=1mdi,djg(d)= \sum_{i = 1}^n \sum_{j = 1}^m \sum_{d | i, d | j} g(d)

=d=1ng(d)ndmd= \sum_{d = 1}^n g(d) \left \lfloor \frac{n}{d} \right \rfloor \left \lfloor \frac{m}{d} \right \rfloor

这里:

g(n)=dnμ(d)f(nd)g(n) = \sum_{d | n} \mu(d)f(\frac{n}{d})

所以我们可以直接预处理gg的前缀和,然后直接对这个式子数论分块,时间复杂度为O(nn)O(n\sqrt{n})

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#include <bits/stdc++.h>
using namespace std;
#define int long long
int n, m;
vector<int> musieve(int n) {
vector<int> primes, mu(n + 1);
vector<bool> vis(n + 1, 0);
mu[0] = 0;
mu[1] = 1;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
mu[i] = -1;
primes.push_back(i);
}
for (int j = 0; j < primes.size() && i * primes[j] <= n; j++) {
vis[i * primes[j]] = 1;
if (i % primes[j]) {
mu[i * primes[j]] = -mu[i];
} else {
mu[i * primes[j]] = 0;
break;
}
}
}
return mu;
}
signed main() {
cin >> n >> m;
if (n > m) {
swap(n, m);
}
auto mu = musieve(m);
function<int(int)> f = [&](int x) -> int { return 2 * x - 1; };
vector<int> g(m + 1, 0);
for (int i = 1; i <= m; i++) {
for (int j = 1; j * i <= m; j++) {
g[j * i] += f(j) * mu[i];
}
}
for (int i = 2; i <= m; i++) {
g[i] += g[i - 1];
}
int ans = 0;
int l = 1;
while (l <= n) {
int d1 = n / l;
int r1 = n / d1;
int d2 = m / l;
int r2 = m / d2;
int r = min(r1, r2);
ans += (g[r] - g[l - 1]) * (n / l) * (m / l);
l = r + 1;
}
cout << ans;
return 0;
}